Архивы Информация - ЭМТИОН

Магнито-оптика высокого разрешения

Магнито-оптика является надежным и широко применяемым методом для исследования магнитной доменной структуры. Благодаря эффекту Фарадея удается регистрировать вращение плоскости поляризации в оптически прозрачных ферроэлектриках. Недостатком метода является относительно невысокая разрешающая способность, ограниченная дифракцией видимого света. Для преодоления этого недостатка  используется поляризационная ближнепольная микроскопия на базе атомно-силового микроскопа. В данном случае используется кантилевер с отверстием на острие для фокусировки лазерного излучения на образец через апертуру кантилевера. Оптическое разрешение в данном случае ограничивается размером апертуры кантилевера и может достигать 50 нм — 100 нм.

 

 

Магнитооптическое изображение магнитной доменной структуры пленки феррит-граната. Верхняя часть изображения соответствует дальнопольному магнито-оптическому изображению, нижняя часть поляризационная ближнепольная микроскопия. Контрастность и разрешающая способность заметно повышается при использовании апертурного кантилевера и работе в режиме поляризационной ближнепольной оптической микроскопии.

 

Современные апертурные кантилеверы для магнито-оптической микроскопии высокого разрешения изготавливаются методом осаждения полой пирамиды с помощью ионного ассистирования, что позволяет с высокой точностью контролировать геометрию конуса и размер апертуры. Методика доступна в АСМ NTEGRA 

 

Схематичное изображение измерительной установки для реализации магнито-оптики высокого разрешения на базе АСМ
Топография (слева) и магнитооптическое изображение магнитной структуры пленки Bi:YIG

 

Образцы предоставлены: Бержанским В.Н. Шапошниковым А.Н., Михайловой Т.В. (Крымский Федеральный Университет им. В.И. Вернадского)

 

 

Исследование микроструктуры аустенитной нержавеющей стали с помощью детектора прошедших электронов TESCAN

Основными преимуществами сталей аустенитного класса являются их высокие служебные характеристики (прочность, пластичность, коррозионная стойкость в большинстве рабочих сред) и хорошая технологичность. Поэтому аустенитные коррозионностойкие стали нашли широкое применение в качестве конструкционного материала в различных отраслях машиностроения. Свойства стали определяются ее внутренней микроструктурой и дефектами кристаллической решетки. В настоящее время для металлографического исследования структуры широко применяются методы электронной микроскопии наряду с более традиционными методами анализа с помощью оптического микроскопа. Использование просвечивающего электронного микроскопа (TEM – transmission electron microscope) позволяет определять плотность дислокаций, дислокационных петель, анализировать выделения вторичных фаз и визуализировать поры и другие дефекты. Такие исследования проводятся как для определения механических свойств новых сплавов, так и для оценки радиационной стойкости различных материалов. Большинство современных просвечивающих микроскопов имеют возможность работать в режиме STEM (scanning TEM), в котором пучок электронов фокусируется в точку, которая перемещается по поверхности образца как точно так же, как это происходит в сканирующем электронном микроскопе. Высокое пространственное разрешение на просвечивающих сканирующих электронных микроскопах достигается за счет подготовки сверхтонких срезов материала и хорошо сфокусированного пучка электронов. Стандартный образец для просвечивающей микроскопии представляет собой диск исследуемого материала диаметром 3.05 мм, утоненного в середине химическим или ионным путём. В некоторых случаях для TEM применяются металлические сетки с плёнкой подложкой на которых размещаются исследуемые материалы. Для работы с такими образцами компания TESCAN предлагает детектор прошедших электронов, реализующий режим сканирующей просвечивающей электронной микроскопии на микроскопах серий VEGA, MIRA, LYRA и VELA.

 

Детектор прошедших электронов устанавливается на столик микроскопа и регистрирует прошедшие через образец электроны. Изображение в светлом поле формируется датчиком, расположенным непосредственно под образцом, а изображение в темном поле складывается из сигналов двух датчиков, расположенных в стороне от оптической оси. Изображение в светлом поле эквивалентно изображению, получаемому в режиме светлого поля STEM, а изображение в темном поле может давать ориентационный контраст

 

На изображении показан участок образца аустенитной нержавеющей стали после ее деформации, полученный с помощью детектора прошедших электронов в режиме светлого поля, установленного на микроскоп Mira LMU. Темные линии вдоль картинки
показывают границы отдельных зерен, а сетка мелких линий показывает дислокации,
возникающие в образце в результате его деформации.

 

 

Кроме этого детектор TE позволяет наблюдать и другие дефекты, такие как поры и выделения вторичных фаз. При выборе детектора TE как основного метода исследования структуры стали следует особое внимание уделять подготовке образцов. В связи с тем, что ускоряющее напряжение сканирующего микроскопа ограничено 30 кВ, для получения изображений высокого разрешения требуется получать достаточно тонкие образцы стали, и в некоторых случаях это может приводить к дефектам пробоподготовки, как это произошло с образцом на картинке ниже. Детектор TE обладает высокой чувствительностью, достаточной для комфортной работы на микроскопах серии Vega при токах пучка несколько пА., с возможностью исследования объектов размерами от нескольких нанометров.

 

Изображение стали детектором TE с дефектом пробоподготовки

 

Источник: http://tescan.ru/application/examples/

Автоматический поиск тонкодисперсных золотых фаз в слабо минерализованных горных породах с помощью СЭМ TESCAN с системой микроанализа AZtec Automated

При исследовании слабо минерализованных горных пород и выявлении особенностей топографии распределения в них тонких золотых фаз (а также их состава и морфологии) геологи и обогатители минерального сырья вынуждены чаще применять высоко локальные методы анализа, чем при изучении типичных золотых руд.

 

Сканирующий электронный микроскоп (СЭМ) в комплекте с системой микроанализа (обычно ЭДС) позволяет получать одновременно как изображение, так и локальный элементный состав каждой фазы, что дает возможность оператору однозначно установить, является ли найденное в образце породы яркое включение золотым. Так, исследовав всю доступную площадь поверхности образца и собрав ЭДС-спектры с каждой фазы, которая потенциально (по яркости на электронном изображении) может быть искомой, оператор СЭМ в итоге делает вывод о количестве золотосодержащих включений в данном образце. Очевидно, подобного рода исследования очень трудоёмки, в особенности при исследовании тонкодисперсных золотых образований, а также, если в образце, помимо золотых включений, встречаются другие минералы, яркость которых на электронных изображениях близка к яркости золота (например, галенит). Также, при поиске вручную никогда нельзя быть уверенным, что оператор обнаруђил в образце действительно все золотые фазы крупнее некоторого порогового значения. Покажем, как можно вывести задачу поиска труднообнаруђимых минералов на качественно новый уровень с помощью СЭМ, оснащенного системой автоматического поиска и анализа частиц AZtecEnergy Automated.

 

Целенаправленный поиск тонкодисперсных золотосодержащих фаз проводился в порошковой пробе, полученной от измельчения седиментолитов (на рис. 1 общий вид пробы). Проба была предоставлена В.В. Ивановым (Дальневосточный геологический институт ДВО РАН, г. Владивосток) для апробации оборудования и программного обеспечения. Работа выполнялась на сканирующем электронном микроскопе MIRA 3 LMH производства TESCAN (Чехия), оснащенном системой энергодисперсионного микроанализа AZtecEnergy Automated производства Oxford Instruments (Великобритания). Использовался программный модуль для автоматического поиска и анализа частиц AZtecFeature. Настройки автоматического поиска:

 

 

  • регистрировались все частицы, в которых концентрация золота выше предела обнаружения EDS-спектрометра;
  • минимальный размер искомых частиц 450 нм, частички золота меньше этого порогового значения игнорировались;
  • шаг сканирования электронным зондом составлял 200 нм;
  • сканировалась вся доступная площадь поверхности образца (в данном случае 55 мм2, рис. 1). Чтобы покрыть всю площадь, столик образцов автоматически перемещается от участка к участку.

 

 

На автоматический сбор данных потребовалось 2 часа, в результате система обнаружила 10 штук золотосодержащих частиц размером от 1 до 5 мкм. Поскольку автоматическое сканирование не требует присутствия оператора, было использовано ночное время. Примечательно, что эта ђе проба предварительно была исследована оператором в «ручном» режиме, и за 12 рабочих смен оператор обнаружил только 6 золотых частиц.
Обычная практика пробоподготовки для минералогического анализа на СЭМ — это изготовление аншлифа, но в данном случае образец не полировался из-за риска утери золотосодержащих частиц, а также потому, что требовалось получить нативные изображения золотых микровключений. Чтобы ярко выраженный рельеф поверхности образца не помешал бы автоматическому поиску Au-частиц, работа проводилась в режиме сканирования Depth с расширенной глубиной фокуса (запатентованная технология TESCAN), благодаря чему при перемещении столика образцов от участка к участку все поля обзора остаются в фокусе.

 

Рис. 1 – Общий вид порошковой пробы

 

 

Изображения некоторых обнаруженных золотых частиц представлены на рис. 2. Как видно, это весьма тонкое морфологически причудливое золото. Отметим, что для того, чтобы подобный автоматический поиск частиц с заранее заданными параметрами стал возможен, требуется СЭМ с прецизионным столиком образцов, который моторизован по всем координатным осям. се модели микроскопов TESCAN, кроме самой бюджетной VEGA SB, имеют столик образцов, моторизованный по всем осям; и точность воспроизведения координат столика более чем достаточна для успешной реализации данного метода.

 

Рис. 2 – Частички золота, обнаруженные в порошковой пробе.
Поиск выполнялся с помощью системы автоматического поиска и анализа частиц AZtecFeature

 

Источник: http://tescan.ru/application/examples/

Многопроходные Методики

Многопроходные методики АСМ обычно используются в задачах, где необходимо определять иные, чем рельеф данные, и при этом необходимо исключить влияние рельефа поверхности.  В качестве примера приведено изображение линий сканирования поперек одного магнитного домена для различных начальных расстояний зонд-образец [1]. Аналогичные методики использовались для определения толщины пленки жидкости на поверхности твердой подложки [2], для наноманипуляций (т.е. для перемещения отдельных атомов [3]), при проведении нанолитографических операций [4].
Первый проход может быть проведен с применением Контактного или Полуконтактного Методов. На втором проходе можно проводить измерения электрических сил или потенциалов, магнитных полей, диссипаций, распределений емкости. В некоторых случаях может быть необходимым и третий проход для исключения влияния не только рельефа, но и поверхностного электрического  поля.

 

Ссылки

  1. Appl. Phys. Lett. 52, 244 (1988).
  2. J. Chem. Phys. 90, 7550 (1989).
  3. Nature 344, 524 (1990).
  4. Nature 347, 748 (1989).

Каталог Confotec NR500 3D сканирующий лазерный рамановский микроскоп

Каталог Confotec NR500 3D сканирующий лазерный рамановский микроскоп

 

  • Рамановские измерения
  • люминесцентные измерения
  • измерения лазерного отражения и пропускания
  • трехмерные (3D) высококонтрастные изображения
    в отраженном свете
  • трехмерные (3D) Рамановские конфокальные измерения
  • информация о спектральных и поляризационных свойствах исследуемых образцов

 

Каталог Монохроматоры спектрографы серия MS

Серия приборов для спектроскопии «Монохроматоры-спектрографы» включает две группы: среднефокусные — высокоапертурные, небольших размеров приборы и длиннофокусные — более полуметра, приборы высокого разрешения с широким плоским фокальным полем. Все приборы данной серии полностью автоматизированы.

 

 

Метод отображения Фазы АСМ

Использование колеблющегося кантилевера в Атомно-силовой микроскопии впервые было предложено Биннигом [1]. Наиболее ранние экспериментальные реализации зондовой микроскопии с колеблющимся кантилевером представлены в работах [2, 3]. В них продемонстрировано влияние градиентов сил на сдвиг резонансной частоты кантилевера, и показана возможность бесконтактного сканирования поверхности образца. В работе [2] было также указано на возможность сканирования с использованием отталкивающих сил. Наибольшее распространение получил «tapping» метод [4]. При его использовании амплитуда колебаний довольно велика, так что колебания зонда проходят в области действия сил притяжения и отталкивания, поэтому этот метод называется также полуконтактным или прерывисто-контактным.

Когда в процессе колебаний кончик зонда касается поверхности образца он испытывает не только отталкивающие, но и адгезионные, капиллярные и ряд других сил. В результате взаимодействия зонда с поверхностью образца происходит сдвиг не только частоты, но и фазы колебаний. Если поверхность образца является неоднородной по свои свойствам, соответствующим будет и фазовый сдвиг. Распределение фазового сдвига по поверхности будет отражать распределение характеристик материала образца. Такой  метод сканирования, при котором регистрируется фазовый сдвиг (Метод Отображения Фазы) является весьма полезным для исследований материалов.

Метод Отображения Фазы позволяет получать ценную информацию в широкой области применений, в некоторых случаях отображая неочевидные контрасты свойств материалов. Этот метод используется, например, для исследований биологических объектов, образцов с магнитными и электрическими характеристиками, а также для ряда других применений.

 

Ссылки

  1. US Pat. 4724318.
  2. J. Appl. Phys. 61, 4723 (1987).
  3. Appl. Phys. Lett. 53, 2400 (1988).
  4. Phys. Rev. Lett. 57, 2403 (1986).

Амплитудно-модуляционная АСМ

Использование колеблющегося кантилевера в Сканирующей Зондовой Микроскопии впервые было предложено Биннигом [1]. Одни из наиболее ранних экспериментальных реализаций амплитудно-модуляционной АСМ  были представлены в работах [2, 3]. В них было продемонстрировано влияние градиентов сил на сдвиг резонансной частоты кантилевера и возможность бесконтактного сканирования поверхности образца. Необходимо отметить также, что ранее  Дюриг изучал частотный сдвиг колеблющегося кантилевера в силовом поле иглы СТМ [4].

 

В работе [2] была продемонстрирована также возможность зондирования материалов при резком уменьшении амплитуды колебаний кантилевера. Возможность сканирования поверхности образца не только в притягивающих, но и в отталкивающих силах была продемонстрирована в [4]. Относительно слабый сдвиг частоты колебаний под влиянием отталкивающих сил означает, что контакт зонда с поверхностью образца в процессе колебаний не является постоянным. Только в течение короткой части периода колебаний зонд «ощущает» контактные отталкивающие силы. Особенно это касается колебаний с большой амплитудой. Сканирование поверхности образца с колеблющимся таким образом кантилевером является не бесконтактным, а скорее прерывисто-контактным. Соответствующий метод Сканирующей Зондовой Микроскопии (Прерывисто-контактный или «Полуконтактный»  Метод) довольно часто используется на практике. «Ощущение» контактных отталкивающих сил в процессе сканирования приводит к дополнительному фазовому сдвигу колебаний кантилевера относительно возбуждающих колебаний пьезовибратора.

 

При проведении магнитных исследований на субмикронном уровне прежде всего необходимо отделить «магнитные» изображения от изображений рельефа. Для решения этой проблемы магнитные измерения проводятся по двухпроходной методике. На первом проходе определяется рельеф поверхности по Контактному или Прерывисто-контактному («полуконтактному») методам. а втором проходе каждой линии сканирования (или изображения  в целом) кантилевер приподнимается над поверхностью и сканирование осуществляется в соответствии с запомненным рельефом. В результате на втором проходе расстояние между  сканируемой поверхностью и закрепленным  концом кантилевера поддерживается постоянным. При этом расстояние зонд-поверхность должно быть достаточно большим, чтобы пренебречь силами Ван-дер-Ваальса, так что на втором проходе кантилевер подвергается воздействию только дальнодействующей магнитной силы.  В соответствии с этим методом и изображение рельефа и магнитное изображение могут быть получены одновременно.

 

Этот фазовый сдвиг зависит от характеристик материала образца. Регистрация и отображение фазового сдвига   в процессе сканирования (метод Отображения Фазового Контраста) широко используется в исследованиях наноструктурированных и неоднородных материалов. Подобно Контактному Методу Рассогласования «Полуконтактный»  Метод Рассогласования для подчеркивания малоразмерных неоднородностей на больших площадях.

 

 

Прерывисто-контактный Метод  обладет определенными преимуществами по сравнению Контактными методами. Прежде всего, при использовании этого метода давление кантилевера на поверхность образца существенно меньше, что позволяет работать с более мягкими и легко разрушающимися материалами, такими как полимеры и биоматериалы. «Полуконтактный» Метод  также более чувствителен к  различным взаимодействиям с поверхностью, что дает возможность ряд характеристик поверхности – распределение вязкости и упругости, электрических и магнитных доменов.

Ссылки

    1. US Pat. 4724318.
    2. J. Appl. Phys. 61, 4723 (1987).
    3. Appl. Phys. Lett. 53, 2400 (1988). 
    4. Phys. Rev. Lett. 57, 2403 (1986).

Микрораман. Измерение механического напряжения в кремнии

 

Механическое напряжение может оказывать прямое или косвенное влияние на функционирование и надежность микросхем, может являться причиной различных режимов отказа, таких как:

— изменения подвижности электронов или дырок

— дислокации вблизи изолирующих областей

— трещины в сколах,

— ползучесть в металлах,

— стрессовая миграция и др.

Напряжение также может быть использован положительным образом, например, для увеличения подвижности носителей.

 

Микроскопия пьезоотклика (АСМ)

Основная идея Силовой Микроскопии Пьезоотклика заключается в локальном воздействии на пьезоэлектрический образец переменного электрического поля и анализе результирующих колебаний его поверхности под зондом [1]. Методика доступна во всех конфигурациях АСМ NTEGRA 

 

 

Пример исследования титаната бария с помощью NTEGRA (метод PFM). Размер изображений 10×10 мкм. Представлены карты амплитуды (a), (с) и фазы (b), (d) вертикальной и латеральной компоненты пьезоотклика соответственно.

 

Ссылки:

  1. M. Alexe, A. Gruverman (Eds.). Nanoscale Characterisation of Ferroelectric Materials. Scanning Probe Microscopy Approach. Springer, 2004.

Методики АСМ

Принцип работы атомно-силового микроскопа основан на регистрации силового взаимодействия между балкой кантилевера (кремниевого зонда) и образцом. Существуют более трех десятков различных методик АСМ сканирования, позволяющих получать ту или иную информацию об образце. Даже базовый микроскоп серии NTEGRA способен получать данные не только о морфологии поверхности но и ее магнитных, электрических, адгезионных свойствах.

 

Магнитооптические, структурные и поверхностные свойства (Bi, Ga)-замещенных DyIG пленок, полученных реактивно-ионным распылением.

Зависимости магнитооптических, структурных и морфологических свойств наноразмерных (Bi, Ga) -замещенных DyIG [(Bi, Ga: DyIG)] пленок полученных методом реактивно ионного распыления на (111) GGG и (111) CMZGGG подложках, от времени кристаллизационного отжига.

 

Было установлено, что шероховатость, степень кристалличности и угол Фарадеевского вращения пленок существенно зависят от типа подложки и времени кристаллизационного отжига. Было определено минимальное время для достижения оптимального соотношения между измеренными магнитооптическими и структурными параметрами пленок. (Materials Research Bulletin 95 (2017) 115–122)

Магнитно-силовая Микроскопия (МСМ)

Магнитно-силовая Микроскопия (МСМ) [1, 2] является эффективным средством исследований магнитных структур на субмикронном уровне. Получаемые с помощью МСМ изображения являются пространственным распределением  некоторого параметра, характеризующего магнитное взаимодействие зонд-образец, например, силу взаимодействия, амплитуду колебаний  магнитного зонда и т.д.

 

Магнитный зондовый датчик  является стандартным кремниевым (или изготовленным из нитрида кремния)  зондовым датчиком, покрытым пленкой из магнитного материала.  МСМ измерения позволяют проводить исследования магнитных доменных структур с высоким пространственным разрешением, записи и считывания  информации в магнитной среде,  процессов перемагничивания и т.д. Методика доступна во всех конфигурациях АСМ NTEGRA 

 

 

Магнитно-силовая микроскопия основана на регистрации сил взаимодействия между образцом и наноразмерным магнитным зондом (кантилевером). Стандартный магнитный зонд представляет собой кантилевер АСМ, покрытый тонкой магнитной пленкой. Измерения МСМ показывают магнитную структуру тонких пленок, объемных образцов, наноструктур и наночастиц с разрешением до нанометрового масштаба. Существует два основных метода регистрации сигнала МСМ: измерение статического прогиба кантилевера и динамическая амплитудная/фазовая микроскопия.

 

МСМ в вакууме. За счет увеличения добротности колебания кантилевера и очистки поверхности достигается увеличение разрешающей способности

Изменение доменной структуры граната под воздействием вертикального магнитного поля

 

 

 

 

При проведении магнитных исследований на субмикронном уровне прежде всего необходимо отделить «магнитные» изображения от изображений рельефа. Для решения этой проблемы магнитные измерения проводятся по двухпроходной методике. На первом проходе определяется рельеф поверхности по Контактному или Прерывисто-контактному («полуконтактному») методам. а втором проходе каждой линии сканирования (или изображения  в целом) кантилевер приподнимается над поверхностью и сканирование осуществляется в соответствии с запомненным рельефом.

 

В результате на втором проходе расстояние между  сканируемой поверхностью и закрепленным  концом кантилевера поддерживается постоянным. При этом расстояние зонд-поверхность должно быть достаточно большим, чтобы пренебречь силами Ван-дер-Ваальса, так что на втором проходе кантилевер подвергается воздействию только дальнодействующей магнитной силы.  В соответствии с этим методом и изображение рельефа и магнитное изображение могут быть получены одновременно.

 

Магнитная структура жесткого диска (слева сверху) с размером бит до 30–40 нм;

И доменные структуры различных магнитно-мягких гранатовых пленок

 

 

В динамической МСМ (Д МСМ) на втором проходе для детектирования магнитного поля используется колеблющийся с резонансной частотой кантилевер (как при использовании Бесконтактного или Прерывисто-контактного методов). В Д МСМ детектируется производная магнитной силы: производная силы в приближении точечного диполя может быть представлена в виде:

 

F’ = n grad(n F), F = (m grad) H

n – единичный вектор нормали к плоскости кантилевера. Как видно из этого выражения сигнал Д МСМ  пропорционален второй производной поля рассеяния.

 

 

  1. Appl. Phys. Lett. 50, 1455 (1987)
  2. J. Appl. Phys. 62, 4293 (1987)

PhotonIcs & Electromagnetics Research Symposium (PIERS’2019)

 

«НТ-МДТ» (Нидерланды) и ООО «ЭМТИОН» приняли участие в 41-м PhotonIcs & Electromagnetics Research Symposium (PIERS’2019), который проходил 17-20 июня 2019 года в Риме. «НТ-МДТ» (Нидерланды)  стал официальным партнером 41-го PIERS и продемонстрировал свой многофункциональный АСМ с открытой архитектурой Ntegra Prima с современной высокоскоростной полностью цифровой электроникой.

 

Больше информации доступно по ссылке